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Substituted a,b-unsaturated-c-butyrolactones, were synthesized from Fischer chromium carbenes and
substituted alkynols in a two-step sequence. This method demonstrates a novel and mild route for the
synthesis of this class of molecules.
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a,b-Unsaturated-c-butyrolactones are key structural subunits
belonging to a number of molecules with pronounced biological
activity. These range from (�)-Arctigenins, a bisbenzylobutyrolac-
tone that exhibits anti-HIV properties1 to Asimicin2 and Bullata-
cin3, two diastereomeric members of the Annonaceous
acetogenins which are not only known for their anti-tumor
activity but also known for being potent anti-malarial, immuno-
suppressive, pesticidal, and anti-feedant agents. Their profound
biological activity led to various strategies for the synthesis of
these compounds.4–13

In the late 1990s, Kerr and Mori had described reactions of alk-
oxy Fischer chromium carbenes with terminal alkynols toward the
synthesis of 4–7-membered lactones.14,15 Taking a cue from their
work we have developed a novel approach toward the synthesis
of substituted a,b-unsaturated-c-butyrolactones by rearrange-
ment of c-methylenebutyrolactones derived from alkoxy Fischer
chromium carbene complexes 1a,b and substituted alkynols 2a–j
(Table 1).

The alkoxy Fischer chromium carbene complexes 1a–b and
alkynes 2a–j used in the reaction were prepared using standard
literature procedures.16–18

The key reaction between alkoxy Fischer chromium carbenes
and substituted alkynols was performed under thermal condi-
tions in the presence and absence of solvents. While the reactions
in solvents (viz THF, toluene, and o-xylene) gave poor yields
(17–58%), the solvent-free reaction conditions generated the
butyrolactones in decent yields. The reaction time was consider-
ably reduced (from 8 to 0.5 h) (Table 1). However these c-meth-
ll rights reserved.
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ylenebutyrolactones (other than 3k) are unstable. We observed
that these molecules start converting to a,b-unsaturated-c-
butyrolactones (4) within 15–20 min of isolation. Hence we could
only obtain the weight of the isolated product and a quick 1H/13C
NMR for these molecules.

It is also known from the literature that c-methylenebutyro-
lactones such as 3 undergo rearrangement in the presence of
TsOH to furnish a,b-unsaturated-c-butyrolactones.19 Hence to
facilitate the conversion of 3 to 4, we further treated the
intermediate c-methylenebutyrolactones (3a–k) with methane-
sulfonic acid (MSA) in aq.THF to generate the desired a,b-unsat-
urated-c-butyrolactones. All but 3k were converted successfully
to the desired a,b-unsaturated-c-methylenebutyrolactones 4a–j
(Table 2). In the case of 3k, we could only isolate the unreacted
starting material.

To improve the procedure we have performed a one-pot synthe-
sis of a,b-unsaturated-c-butyrolactone from the corresponding
carbene and alkynol. As an example, carbene 2f was reacted with
1a. Once the carbene was consumed the crude reaction mixture
was further treated with MSA and water and stirred for 2–3 days.
The desired product 4f was obtained as colorless oil after column
purification (isolated yield 37%).

The structures of compounds 3a–j and 4a–j were clearly distin-
guished from the 1H NMR spectra. The 1H NMR of 3a showed a sin-
glet at d 4.40 corresponding to the benzylic proton, which was
missing in 4a, also the ethereal alkyl group present in 3a was
absent in 4a (Scheme 1).

A plausible mechanism for the formation of the intermediate
c-methylenebutyrolactones (3a–j) is depicted in Scheme 2. This
mechanism is based on the work by Solà and co-workers.20

In conclusion, we have described a facile synthesis of substi-
tuted racemic butyrolactones via Fischer chromium carbenes and
substituted alkynols. Work is in progress toward understanding
the mechanism for conversion of 3a–j to 4a–j and toward



Table 1
Reactions of alkoxy Fischer chromium carbenes with alkynols

(CO)5Cr
R

O R

OH R

R
O RO

R
O

RR

+

Solvent
or Solvent Free

60-80 ºC

1a: R1 = Me; R4= n-Bu
1b: R1 = n-Pr; R4 = Me 2a-k 3a-k

Compound           R4        R1     R2        R3

      2a / 3a           n-Bu    Me     Me     p-Me        
      2b / 3b          n-Bu    Me     Me     p-OMe
      2c / 3c           n-Bu    Me     H       o-Me
      2d / 3d          n-Bu    Me      Et      p-Me
      2e / 3e           n-Bu    Me     Et      p-OMe
      2f / 3f            n-Bu    Me      H      p-OMe
      2g / 3g          n-Bu    Me      H       p-Me
      2h / 3h          n-Bu    Me      H       H
      2i / 3i             n-Bu    Me     H       p-F
      2j / 3j              Me      n-Pr   H      p-t-Bu
      2k / 3k           n-Bu    Me     H       p-TBS

1

1

2

2

3

3

4 4

Entry Alkynol c-Methylenebutyrolactone Yields (%) (solvents)c Yield (%) (solvent free)

1

2a

OH

3aa

OO

nBu
MeO

17 (THF/toluene) 45

2

2b

OH
MeO

3ba

OO

nBu
MeO

MeO

20 (THF/toluene) 48

3b

2c

OH

3ca

OO

nBu
MeO

15 (THF/toluene) 62

4

2d

OH

3da

OO

nBu
MeO

21 (THF/o-xylene) 63

5

2e

OH
MeO

3ea

OO

nBu
MeO

MeO

20 (THF, toluene and o-xylene) 68

6

2f

OH
MeO

3f a

OO

nBu
MeO

MeO

25 (THF) 45

7

2g

OH

3ga

OO

nBu
MeO

21 (THF/toluene) 49
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Table 1 (continued)

Entry Alkynol c-Methylenebutyrolactone Yields (%) (solvents)c Yield (%) (solvent free)

8

2h
OH

3ha

OO

nBu
MeO

22 (THF/toluene) 59

9

2i

F
OH

3ia

OO

nBu
MeO

F

23 (THF, toluene and o-xylene) 51

10

2j

OH

3jb

OO

OPr 28 (THF/toluene) 49

11

2k

Si
OH

3ka

OO

nBu
MeO

Si
t-Bu

56 (THF) 72

a 1a Fischer chromium carbenes were used.
b 1b Fischer chromium carbenes were used.
c Temperatures for reaction in solvents are as follows: 60 �C (THF), 80 �C (toluene) and 135 �C (o-xylene).

Table 2
Conversion of butyrolactones to butenolides

O R2O

O
R4

R1R3

O R2O

O
R4

R3

MSA, aq. THF, stirred in air 2-3d

3 4

Substrate Product Yield (%)

3a 4a 84
3b 4b 83
3c 4c 80
3d 4d 83
3e 4e 84
3f 4f 82
3g 4g 82
3h 4h 81
3i 4i 85
3j 4j 82
3k 4k 0

O R2 R2

R2 R2

O

O

R4

R4

R4

OO

O
R1

R1

(CO)5Cr
O

HO

R3 R3

R3

R3

Br
HO

+ +

Scheme 1. Synthetic strategy.
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Scheme 2. Mechanism for the conversion of alkoxy Fischer chromium carbenes to
butyrolactones.
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the synthesis of their optically active analogues. These
preliminary results establish a foundation to expand this
methodology and demonstrate its utility in the synthesis of bio-
logically significant molecules and provide for diversity in the
preparation of compounds for structure–activity relationship
(SAR) studies.
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